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Abstract

The field of multi-object tracking has recently seen a
renewed interest in the good old schema of tracking-by-
detection, as its simplicity and strong priors spare it from
the complex design and painful babysitting of tracking-by-
attention approaches. In view of this, we aim at extend-
ing tracking-by-detection to multi-modal settings, where a
comprehensive cost has to be computed from heterogeneous
information e.g., 2D motion cues, visual appearance, and
pose estimates. More precisely, we follow a case study
where a rough estimate of 3D information is also available
and must be merged with other traditional metrics (e.g., the
IoU). To achieve that, recent approaches resort to either
simple rules or complex heuristics to balance the contri-
bution of each cost. However, i) they require careful tuning
of tailored hyperparameters on a hold-out set, and ii) they
imply these costs to be independent, which does not hold in
reality. We address these issues by building upon an elegant
probabilistic formulation, which considers the cost of a can-
didate association as the negative log-likelihood yielded by
a deep density estimator, trained to model the conditional
joint probability distribution of correct associations. Our
experiments, conducted on both simulated and real bench-
marks, show that our approach consistently enhances the
performance of several tracking-by-detection algorithms.

1. Introduction
Real-time multi-person tracking in crowded real-world

scenarios is a challenging and difficult problem with appli-
cations ranging from autonomous driving to visual surveil-
lance. Indeed, the work done to create a reliable tracker that
can function in every environment is noteworthy.

The most successful methods currently available in
literature can be broadly grouped into three main cat-
egories: tracking-by-detection [10, 5, 39], tracking-by-
regression [26, 36, 51], and tracking-by-attention [56, 85,
83]. In tracking-by-detection, bounding boxes are com-
puted independently for each frame and associated with

tracks in subsequent steps. Tracking-by-regression unifies
detection and motion analysis, with a single module that
simultaneously locates the bounding boxes and their dis-
placement w.r.t. the previous frame. Finally, in tracking-
by-attention, an end-to-end deep tracker based on self-
attention [79] manages the life-cycle of a set of track pre-
dictions through the video sequence.

Although the two latter paradigms have recently sparked
the research interest, tracking-by-detection still proves to be
competitive [88, 11], under its simplicity, reliability, and
the emergence of super-accurate object detectors [27]. In
light of these considerations, we aim to strengthen tracking-
by-detection algorithms by enriching the information they
usually leverage – i.e., the displacement between estimated
and actual bounding boxes [82, 88] – with additional cues.
Indeed, as shown by several works of multi-modal track-
ing [14, 87], the visual domain is just one of the possi-
ble sources that may contribute. The pose of the skele-
ton [16], the depth maps [62, 18] and even thermal measure-
ments [45] are concepts that can gain further robustness, as
they encode a deeper understanding of the scene. In par-
ticular, as humans move and interact in a three-dimensional
space, one of the goals of this work is to provide the tracker
with the (predicted) distance from the camera, thus resem-
bling what is generally acknowledged as “2.5D”. To achieve
that, we train a per-istance distance deep regressor on MOT-
Synth [25], a recently released synthetic dataset displaying
immense variety in scenes, lightning/weather conditions,
pedestrians’ appearance, and behaviors.

However, the fusion of multi-modal representations
poses a big question: how to weigh the contribution of each
input domain to the overall cost? It represents a crucial step,
as its design directly impacts the subsequent assignment op-
timization problem: in this respect, existing works resort to
handwritten formulas and heuristics e.g., DeepSORT [82]
computes two different cost matrices and combines them
through a weighted sum. Notably, the authors of [62] build
upon a probabilistic formulation, which recasts the cost ci,j
as the likelihood of the event “the i-th detection belongs to
the j-th tracklet”. Afterward, it is about estimating a den-
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sity function on top of correct associations, termed inliers.
Although these fusing approaches may appear reasonable,
they hide several practical and conceptual pitfalls:

• They introduce additional hyperparameters, which re-
quire careful tuning on a separate validation set and
hence additional labeled data.

• A single choice of these hyperparameters cannot fit dif-
ferent scenes perfectly, as these typically display dif-
ferent dynamics in terms of pedestrians’ motion and
spatial density, the camera’s position/motion, and light-
ing/weather conditions. Therefore, the right trade-off is
likely to be scenario-dependent;

• Common approaches (e.g., a simple weighted summa-
tion) assume the input modalities to be independent,
thus overlooking their interactions.

We propose to take into account the weaknesses mentioned
above through a dedicated parametric density estimator –
termed TrackFlow – tasked to summarize several input
costs/displacements in a single output metric, e.g., the prob-
ability that a specific detection D belongs to a particular
track T . As we strive to approximate the underlying condi-
tional probability distribution P(D ∈ T | T ) over the input
costs, we borrow the estimator from the world of deep gen-
erative models, in particular from the literature of Normal-
izing Flow models [21, 22, 41]. In fact, these models rep-
resent a flexible and effective tool to perform density esti-
mation. Moreover, we would like to emphasize the reliance
of such a module on an additional context-level representa-
tion, which we provide in order to inform the model about
scene-level peculiarities. This way, the computation of the
likelihood is also conditioned on visual cues of the scene,
which we assume may be unobserved during evaluation.

Extensive experiments on MOTSynth [25], MOT17 [57],
and MOT20 [17] show that the naive cost metric – i.e., the
2D intersection between predicted and candidate bounding
boxes – can be replaced by the score provided by our ap-
proach, with a remarkable performance gain in exchange.

2. Related Works
2.1. Multiple object tracking (MOT)

Since the advent of deep learning, advances in object
detection [65, 66, 27, 90] drove the community towards
tracking-by-detection [6, 82, 9, 88, 89, 53], where bound-
ing boxes are associated with tracks in subsequent steps.
Among the most successful works, Tracktor [6] pushes
tracking-by-detection to the edge by relying solely on an
object detector to perform tracking. CenterTrack [89] pro-
vides a point-based framework for joint detection and track-
ing based on CenterNet [24]. Similarly, RetinaTrack [53]
extends RetinaNet [50] to offer a conceptually simple and

efficient joint model for detection and tracking, leveraging
instance-level embeddings. More recently, ByteTrack [88]
further establishes this paradigm, unleashing the full poten-
tial of YOLOX [27]: notably, it uses almost every predicted
detection, and not only the most confident ones.

As Transformers [79] gained popularity [23, 34, 52, 12],
various attempts have been carried out to apply them to
MOT. TransTrack [75] leverages the attention-based query-
key mechanism to decouple MOT as two sub-tasks i.e., de-
tection and association. Similarly, TrackFormer [56] jointly
performs tracking and detection, with a single decoder net-
work. Furthermore, MOTR [86] builds upon DETR [12]
and introduce “track queries” to model the tracked instances
in the entire video, in an end-to-end fashion.

Recently, a few attempts have been made to leverage 3D
information for MOT. Quo Vadis [18] shows that forecast
analysis performed in a bird’s-eye view can improve long-
term tracking robustness. To do so, it relies on a data-driven
heuristics for the homography estimation: hence, it may
suffer in presence of non-static cameras or target objects
moving on multiple planes. Differently, PHALP [62] com-
putes a three-attribute representation for each bounding box
i.e., appearance, pose, and location. Similarly to our ap-
proach, they adopt a probabilistic formulation to compute
the posterior probabilities of every detection belonging to
each one of the tracklets.

MOT and trajectory forecasting As our approach com-
putes an approximation of the true P(D ∈ T | T ), it can
be thought as a one-step-ahead trajectory predictor, thus re-
sembling a non-linear and stochastic Kalman filter learned
directly from data. In this respect, our work actually fits
the very recent strand of literature [69, 18, 38, 58] that
takes into consideration the possible applications of trajec-
tory forecasting in MOT. Similarly to our approach, the au-
thors of [69] perform density estimation over the location
of the bounding box in the next time-step; however, while
they rely on PixelRNN [77] and model P(D ∈ T | T ) as
a multinomial category distribution, we instead exploit a
more flexible and powerful family of generative approaches,
such as normalizing flow models [21, 68, 22]. Differently,
Kesa et al. [38] propose a deterministic approach that sim-
ply regresses the next position of the bounding box, which,
arguably, does not consider the stochastic and multi-modal
nature of human motion. Finally, the authors of [58] show
that a teacher-student training strategy helps when only a
few past observations are available to the model, as hold in
practice for newborn tracklets.

2.2. Distance estimation

The estimation of distances from monocular images is
a crucial task for many computer vision applications and
has been studied for many years [1, 29, 63, 30, 64, 47].
Classical approaches address the problem by regressing the
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Figure 1. Overview of the camera distance estimator. DistSynth predicts per-objects distances from a short video clip. We further provide
the centers of each bounding box as an additional input channel. After several convolutional blocks processing each frame independently:
i) a temporal module is devised to extract temporal patterns; ii) the activation maps undergo the FPN branch, in order to preserve local
details. Finally, feature maps from distinct layers are stacked and passed to the RoI pooling layer. The latter produces per-pedestrian vector
representations, which we finally use to predict the pedestrians’ expected distance µ and uncertainty σ2.

relation between the object’s geometry and the distance.
Among these, the most popular is the inverse perspective
mapping (IPM) algorithm [55, 67], which converts image
points into bird’s-eye view coordinates in an iterative man-
ner. Unfortunately, due to the presence of notable distor-
tion, IPM may yield unreliable results for objects located
far from the camera. Following methods [33, 31] exploit the
size of the bounding box to infer the geometry of the object;
despite their simplicity and relative effectiveness, these ap-
proaches are unreliable if target instances are from different
classes (e.g., vehicles, people, etc.), or in the case of high
intra-class variance (as hold for the class person).

More recently, Zhu et al. [91] exploit Deep Convolu-
tional Neural Networks (CNNs) to enrich the representa-
tion of each bounding box with visual cues. In details, they
firstly extract the detections through Faster R-CNN [66]; af-
terward, they feed a tailored CNN with the whole frame and
finally apply Region of Interest (RoI) pooling, which spa-
tially aggregates activation maps and outputs one represen-
tation for each retrieved detection. As discussed in the fol-
lowing section, overlapping objects may lead to erroneous
predictions, as the features of foreground objects may con-
taminate the activations of the occluded ones.

3. Method
Our architecture comprises of two main building blocks:

• A deep neural regressor that, given a monocular image,
estimates the distance of each pedestrian from the cam-
era (see Sec. 3.1). We called it DistSynth, as we train
only on synthetic images from MOTSynth [25].

• A deep density estimator, termed TrackFlow (Sec. 3.2),
which has to merge 2D cues (e.g., the spatial displace-
ment between bounding boxes) with the 3D localization
information obtained through DistSynth.

3.1. DistSynth: estimating per-instance distance
from a monocular image

As the output of the distance estimator is meant to further
refine the association cost between detections and tracks,
it is crucial to handle possible temporary occlusions and
noisy motion patterns. Therefore, as deeply discussed in
the following, our model integrates time information (e.g.,
a short collection of past frames) with visual cues to achieve
a smoother and more reliable distance prediction.

In details, the network is fed with a short video clip
RT×C×W×H , where T is the length of the video clip, C is
the number of channels, W and H are the width and height
of the frames. As we are not interested in a dense predic-
tion for the entire scene but in pedestrian-level predictions,
we ask the network to focus its attention on a restricted set
of locations: namely, in proximity of the bounding boxes
provided by an off-the-shelf detector, e.g., YOLOX [27].
To do so, we concatenate an additional channel to the RGB
frames, representing the center of each bounding box.

The architecture mainly follows the design of residual
networks [35] (in our experiments, we used ResNet-34 pre-
trained on ImageNet [19]). Importantly, we apply two mod-
ifications to the feature extractor to enhance its capabilities,
discussed in the following two sub-paragraphs.

Exploiting temporal information While related



works [91, 33] focus solely on the last frame of inter-
est, we propose to condition the predictions of camera
distances on a small window of previous frames, thus
encompassing temporal dynamics. The main goal is to
provide a much more robust prediction when the target
pedestrian is partially or temporarily occluded in the
current frame but visible in the previous ones. In that
case, his/her history would compensate and smooth the
prediction. Therefore, we equip the backbone with a layer
capable of processing the sequence of past feature maps:
precisely, a Convolutional Recurrent Neural Network, i.e.,
a ConvLSTM [73], whose output is a single-frame feature
map encoding all the history of past frames. We insert such
a module in the deeper layer of the network i.e., to the exit
of the last residual block of our backbone.

Improving spatial representations Standard CNNs usu-
ally exploit pooling layers to progressively down-size the
activation maps. For classification, there are few doubts that
such an operation provides advantageous properties (e.g.,
translation invariance, high-level reasoning, etc.). Consid-
ered the task of per-object distance estimation, instead, we
argue that the reliance on pooling layers could be detri-
mental. In fact, considered people located far away from
the camera (i.e., those surrounded by tiny bounding boxes),
pooling layers could over-subsample the corresponding spa-
tial regions, with a significant loss in terms of visual cues.

To avoid such a detrimental issue, we equip the feature
extractor with an additional branch based on Feature Pyra-
mid Network (FPN) [49]. In practice, it begins with the
encoding produced by the temporal module, then it pro-
ceeds in the reverse direction (i.e., from deepers layer to
the one closer to the input), and restores the original reso-
lution through up-sampling layers and residual paths from
the forward flow. To gain a deeper understanding, Fig. 1
proposes a comprehensive visual of the architecture.

Output and loss function Once the feature maps have been
processed through the temporal module and the pyramid,
we again exploit the bounding boxes and perform RoI pool-
ing [28] to obtain a feature vector for each pedestrian. The
result is a RN×H×K×K feature map, where N indicates
the number of detected pedestrians, H the number of hid-
den channels, and K = 4 the dimension of the RoI pooling
window. We process these feature maps through a multi-
layer perceptron (MLP), which outputs the predicted dis-
tances. Finally, we do not make a punctual estimate but
ask the network to place a Gaussian distribution over the
expected distance, thus obtaining the model’s aleatoric un-
certainty [8, 20]. In practice, it translates into yielding two
values, d ≡ dµ and dσ2 , and optimizing the Gaussian Neg-
ative Log Likelihood (GNLL) [59], as follows:

GNLL(dtrue|d, dσ2) =
1

2

(
log(dσ2) +

(d− dtrue)
2

dσ2

)
.

3.2. TrackFlow: modeling the density of correct
associations through Normalizing Flows

3.2.1 Problem statement

In a nutshell, the tracking-by-detection paradigm usually re-
lies on the Kalman filter [74, 9] to estimate the next 2D spa-
tial position pt+1

j = [xt+1
j , yt+1

j ] of a certain pedestrian j in
the next t+ 1-th frame. The prediction p̂t+1

j depends upon
the set of previous observations, contained in a short track
Tj = [pt

j ,p
t−1
j , . . . ,p

t−|T |+1
j ] recording the past matched

locations of the pedestrian j. Afterward, given a new set
of detections Di = [pi,wi,hi] i = 1, 2, . . . , |D| (with wi

and hi being the width and the height of the bounding box
respectively), the cost of a candidate association between
Di and the track Tj can be computed as the displacement
∆p ≡ ∆p(Tj , Di) between the predicted location and the
candidate one, i.e., ∆p = d(p̂t+1

j ,pi). In such a nota-
tion, d(·, ·) stands for any function penalizing such a dis-
placement, as the Euclidean distance ||p̂t+1

j − pi||22. Sim-
ilarly, the variation of the sizes of the bounding box, i.e.,
∆w,h ≡ ∆w,h(Tj , Di) could be taken into account.

Furthermore, by virtue of the regressor introduced
in Sec. 3.1, we could additionally exploit the displace-
ment beliefs/reality relating to camera distances ∆d =
d(d̂ t+1

j , di), given the estimated one-step-ahead distance
d̂ t+1
j for the track Tj and the distance di of the candidate

detection Di, inferred through DistSynth. To ease the nota-
tion, from now on we will denote Tj / Di as T / D.

Once we have computed these costs (but other could be
profitably envisioned), we shall define an aggregated cost
function Φ(T,D) = f(∆p,∆w,h,∆d) that jointly com-
putes the cost of the candidate association D ∈ T . There are
several approaches to achieve that; among those, we build
upon the probabilistic formulation proposed in [62] and de-
fine the cost Φ as negative log-(conditional) likelihood:

Φ(T,D) = − logPθ(D ∈ T | T )
= − log f([∆p,∆w,h,∆d] | T, θ).

In that formulation, the target conditional probability distri-
bution Pθ(·) parametrizes as a learnable function f(· | θ),
where its parameters θ have to be sought by maximizing
the likelihood of correct associations (often referred to as
inliers). To ease the optimization, the authors of [62] fac-
torized the above-mentioned density, assuming that each of
the marginal distributions is independent, such that Pθ(D ∈
T | T ) ∝ Pp Pw,h Pd. Therefore:

Φ(T,D) = − logPθ1(∆p)−logPθ2(∆w,h)−logPθ3(∆d).

As discussed in the next subsection, we do not impose such
an assumption but approximate, via Maximum Likelihood
Estimation (MLE), the joint conditional distribution with a
deep generative model f(· | T, θ).



3.2.2 Overview of the architecture

Among many possible choices (e.g., variational autoen-
coders [42], generative adversarial networks [32] or the
most recent diffusion models [37]), we borrow the de-
sign of f(·|T, θ) from the family of normalizing flow mod-
els [21, 68, 22]. Notably, they provide an exact estimate of
the likelihood of a sample, in contrast with other approaches
that yield a lower bound (as the variational autoencoder and
its variants [78, 76]). Moreover, normalizing flow models
grant high flexibility, as they do not rely on a specific ap-
proximating family for the posterior distribution. The latter
is instead a peculiar trait of the variational methodology,
which may suffer if the approximating family does not con-
tain the true posterior distribution.

Briefly, a normalizing flow model creates an invertible
mapping between a simple factorized base distribution with
known density (e.g., a standard Gaussian in our experi-
ments) and an arbitrary, complex and multi-modal distribu-
tion, which in our formulation is the conditional distribution
P(D ∈ T | T ) underlying correct associations. The map-
ping between the two distributions is carried out through a
sequence of L invertible and differentiable transformations
gl(· | T ) (with parameters θl, omitted in the following),
which progressively refines the initial density through the
rule for change of variables. In formal terms, our proposal
named TrackFlow takes the following abstract form:

f([∆p,∆w,h,∆d] | T, θ) = g−1
L ◦ · · · ◦ g−1

2 ◦ g−1
1 , (1)

where

forward pass : zl = gl(zl−1 | T ); zL ∼ Pθ(D ∈ T | T )
inverse pass : zl−1 = g−1

l (zl | T ); z0 ∼ N (0, 1)

are the forward pass (i.e., used when sampling) and the in-
verse pass (i.e., used to evaluate densities) of TrackFlow.
The model can be learned via Stochastic Gradient Descent
(SGD), by minimizing the negative log-likelihood on a
batch of associations sampled from the true P(D ∈ T | T )
(i.e., corresponding to valid tracks). The loss function ex-
ploits the inverse pass and takes into account the likelihood
under the base distribution [44] plus an additive term for
each change of variable occurred through the flow.

Base architecture Regarding the design of each layer
gl(· | T ), we make use of several well-established building
blocks, such as normalization layers, masked autoregres-
sive layers [60], and invertible residual blocks [13]. In par-
ticular, our model features a cascade of residual flows [4],
which we preferred to other valuable alternatives (e.g., Re-
alNVP [22]) in light of their expressiveness and proven nu-
merical stability. For the sake of conciseness we are omit-
ting the inverse functions, but the overall representation of

the forward pass of the l-th block proceeds as follows:

residual block : z = MLPl(zl−1) + zl−1,

act. norm : z = sl ⊙ z + bl,

masked auto. flow : zl = MAFl(concat[z || el]),

where el refers to an auxiliary learnable representation dis-
cussed below, by which we take into account the depen-
dence on the external context (e.g., the track T ).

3.2.3 Context encoder

Dependence on temporal cues As stated by Eq. 1, the
inverse pass (but also the forward one) of TrackFlow de-
pends also on the observed track T . By introducing such
a conditioning information, the model could learn to assign
higher likelihood to the candidate associations that exhibit
motion patterns coherent with those observed in the recent
past. To introduce such an information, we take inspira-
tion from [81, 71] and condition each invertible layer on an
additional latent representation el. The latter is given by a
tailored temporal encoder network eθl s.t. el = eθl(T ) fed
with the observed track T .

Importantly: i) as advocated in several recent works [70,
3], we provide the encoder network with relative displace-
ments between subsequent observations, and not with the
absolute coordinates of previous positions; ii) regarding the
design of the encoder network, it could be any module
that extracts temporal features (e.g., Gated Recurrent Units
(GRU) [15, 71] or Transformers [79, 58]). In this work, the
layout of the context encoder is a subset of the Temporal Fu-
sion Transformer (TFT) [48], a well-established and flexible
backbone for time-series analysis/forecasting. In particular,
we started from the original architecture and discarded the
decoding modules, employing only the layers needed to en-
code the previous time-steps (referred as “past inputs” in
the original paper) of the track T .
Dependence on scene-related visual information Impor-
tantly, one of the main issues we aim to address is the (lack
of) adaptation to the scene under consideration. In this re-
spect, existing approaches devise the same aggregated cost
function for all conditions, which we argue may clash with
the conditions we expect in real-world settings. Indeed,
since different scenarios may display substantial differences
(e.g., night/day, camera orientation, moving/stationary cam-
era, etc.), some costs should be accordingly weighted more.

To provide such a feature, we propose to further condi-
tion the estimated density f(·| T, θ) on a visual represen-
tation of the whole current frame. In particular, we exploit
the variety of MOTSynth [25] (comprising more than five
hundred scenarios) and encode each frame xt through the
CLIP’s [61] visual encoder, thus profiting from its widely-
known zero-shot capabilities. On top of the extracted rep-
resentations, we run the k-means algorithm and split them



into |C|= 16 clusters, each of which represents an abstract
hyper-scenario. We then introduce the index ĉ of the cluster
as a further conditioning variable:

f ≡ f([∆p,∆w,h,∆d] | T, ĉ , θ) (2)

where ĉ = argmini=1,...,|C| ||CLIPv(x
t)− ci||22, (3)

and ci are the |C| centroids retrieved through the k-means
pass. Such a formulation also allows inference on novel
scenarios, unseen during the training stage. To practically
condition the model, we simply extend the context encoder
eθl(·) to take an additional learnable embedding embl[ĉ] as
input, s.t. el ≡ eθl(T, embl[ĉ]). In practice, in light of
the TFT [48] layout employed by our context encoder, it
becomes natural to include scene embeddings embl[ĉ] as
static covariates [48, 80] – i.e., something holding time-
independent information about the time-series. We kindly
refer the reader to the original paper [48] for all the impor-
tant details regarding how the TFT uses covariates to influ-
ence the forward pass of each layer.

3.2.4 Normalization of the cost matrix

Once the density estimator f(·| T, ĉ , θ) has been trained,
we exploit its output to fill the cost matrix Φ(Dj , Ti). Fol-
lowing Bastani et al. [2], we apply a further normalization
step, defined as follows:

Φrow =
eΦ(Dj,Ti)/σ∑
k e

Φ(Dj,Tk)/σ
, Φcol =

eΦ(Dj,Ti)/σ∑
k e

Φ(Dk,Ti)/σ
, (4)

Φ̂(Dj , Ti) = min(Φrow(Dj , Ti),Φ
col(Dj , Ti)). (5)

In practice, we compute softmax (smoothed through a tem-
perature hyperparameter σ) along rows and columns of Φ;
afterward, we take the cell-wise minimum between the two
cost matrices. We finally pass the normalized cost matrix Φ̂
to the Hungarian algorithm for solving the associations.

4. Experiments
4.1. Datasets

We evaluate the performance of our models on the MOT-
Synth [25], MOT17 [57], and MOT20 [17] benchmarks.
MOTSynth We train both our main models on MOT-
Synth [25], a large synthetic dataset designed for pedes-
trian detection, tracking, and segmentation in urban envi-
ronments. The dataset was generated using the photorealis-
tic video game Grand Theft Auto V and comprises 764 full-
HD videos 1800 frames long recorded at 20 frames per sec-
ond. The dataset includes a range of challenging scenarios,
displaying various weather conditions, lighting, viewpoints,
and pedestrian densities. The authors split the dataset into
190 test sequences and 574 train sequences; to select the hy-
perparameters of our models, we extract a holdout set of 32

sequences from the training set. To speed up the evaluation
phase, we assess the tracking performance only on the first
600 frames of each testing video.

After a careful analysis of the dataset, we found a previ-
ous data-cleaning stage to be crucial. Indeed, as the dataset
was collected automatically, there are several unrealistic dy-
namics, such as ground-truth tracks related to hidden peo-
ple (e.g., behind walls) for many seconds. To address it,
during the tracking performance evaluation, we disable an-
notations for targets not visible for more than 60 frames.
Eventually, we re-activate the pedestrians in case they come
back into the scene. In addition, we disable the annotations
for pedestrians whose distance from the camera exceeds a
certain threshold (fixed at 70 meters), as we observe that
they would slow down the training of the distance estimator
with no evident benefits.

To better investigate the comparison of different trackers,
we split the sequences of test sets based on their difficulty:
namely easy, moderate, and hard. We characterize the track-
ing complexity through the HOTA, IDF1, and ID switches
(IDs) metrics of three trackers (i.e., SORT, Bytetrack, and
OC-SORT) and applied k-means clustering to create three
clusters of sequences. By doing so, the easy subset contains
26 sequences, the moderate subset contains 67 sequences,
and the hard subset contains 42 sequences.

MOT17 and MOT20 We use the standard benchmarks
MOT17 [57] and MOT20 [17] to evaluate multiple ob-
ject tracking algorithms in crowded real-world scenarios.
More specifically, MOT17 comprises seven training and
seven test sequences of real-world scenarios. Similarly,
the MOT20 benchmark, which is the latest addition to the
MOTChallenge [17], also features challenging scenes with
high pedestrian density, different indoor and outdoor loca-
tions, and different times of the day. Following the eval-
uation protocol introduced in [88], we define the MOT17
validation set by retaining half of its training set.

4.2. Evaluation metrics

Tracking We adhere to the CLEAR metrics [7] and
provide the IDF1 and the higher-order tracking accuracy
(HOTA) [54]. The former, the IDF1, evaluates the ability of
the tracker to preserve the identities of objects through time
and computes as the harmonic mean of the precision and
recall of identity assignments between consecutive frames.
The HOTA is a more comprehensive metric that simultane-
ously considers detection and association accuracy.

Distance estimation Besides considering the common
metrics based on the squared error, we propose a novel mea-
sure, called Average Localization of Occluded objects Error
(ALOE), tailored to measure the precision of the distance
estimator for objects with a varying occlusion rate. In the
following, we provide a summary of these metrics:



Easy Moderate Hard All

Metrics HOTA ↑ IDF1 ↑ HOTA ↑ IDF1 ↑ HOTA ↑ IDF1 ↑ HOTA ↑ IDF1 ↑
SORT [9] 63.48 79.40 50.31 62.11 37.48 45.13 48.42 59.05
+ TrackFlow GT +4.37 +7.41 +5.33 +9.09 +6.54 +10.88 +5.49 +9.62
+ TrackFlow +0.31 +0.97 +0.81 +1.63 +0.74 +1.56 +0.54 +1.22

ByteTrack [88] 63.22 80.84 49.91 62.46 37.61 46.15 48.21 59.79
+ TrackFlow GT +3.76 +2.82 +5.47 +5.51 +5.08 +4.60 +4.75 +4.54
+ TrackFlow +0.13 +1.80 +0.47 +1.21 +0.88 +1.81 +0.49 +1.41

OC-SORT [11] 65.56 81.61 52.42 63.50 38.10 45.48 49.96 60.16
+ TrackFlow GT +2.41 +3.76 +4.88 +7.70 +6.18 +9.55 +4.67 +7.67
+ TrackFlow +0.44 +0.84 +0.60 +1.09 +1.17 +1.96 +0.31 +0.70

Tracktor [6] 46.59 49.40 29.15 28.81 21.58 22.68 30.82 30.91

CenterTrack [89] 43.75 43.01 28.13 24.05 20.03 18.79 29.32 26.20

Table 1. Tracking results on MOTSynth. For each tracker, we report its extended version using either our distance estimator (i.e., Track-
Flow) and ground-truth distances, i.e., TrackFlow (GT). For a wider comparison, we also report two tracking-by-regression approaches.

• τ -Accuracy [46] (δ<τ ): % of di s.t. max( di

d∗
i
, di∗

di
) =

δ < τ (e.g., τ = 1.25), represents the maximum al-
lowed relative error;

• Average Localization Precision [84, 8] (ALP@τ ): % of
di s.t. |di − d∗i | = δ < τ (e.g., τ ∈ {0.5m, 1.m, 2.m})
is the mean average error in true distance range;

• Error distances [91]: absolute relative difference (Abs.
Rel.), squared relative difference (Squa. Abs.), root
mean squared error (RMSE), root mean squared error
in the log-space (RMSElog);

• ALOE[τ1:τ2] – Average Localization of Occluded ob-
jects Error (ours): avg. absolute error (meters) for ob-
jects with an occlusion level between τ1 and τ2, with
τ ∈ [0, 1].

4.3. Implementations details

We feed the distance estimator with video clips of 6
frames, sampled with a uniform stride of length 8: this
way, each clip lasts approximately 2 seconds. We adopt
1280 × 720 as input resolution, thus further preserving
the visual cues. We set the batch size equal to 4 and use
Adam [40] as optimizer, with a learning rate of 5 × 10−5.
On the other hand, the density estimator is trained with a
batch size of 512, Adam [40] as optimizer with learning rate
1× 10−3. The normalizing flow consists of 16 flow blocks,
each comprising 64 hidden neurons; regarding context con-
ditioning, we fix the number of observed past observations
|T |= 8 and the number of visual clusters C = 16. Unless
otherwise specified, both the networks are trained only on
synthetic data (i.e., the training set of MOTSynth); we leave
the worth-noting investigation of possible transfer learning
strategies for future works.

MOT17 MOT20

Metrics HOTA ↑ IDF1 ↑ HOTA ↑ IDF1 ↑
SORT [9] 64.17 72.98 60.56 74.30
+ TrackFlow +1.78 +1.41 +0.15 +0.22

ByteTrack [88] 67.73 79.81 58.94 74.89
+ TrackFlow +0.40 +0.23 +0.54 +0.06

OC-SORT [11] 66.22 77.74 55.18 71.22
+ TrackFlow +0.35 +1.12 +0.53 +0.76

Tracktor++ [6] 44.66 55.00 30.36 40.63

CenterTrack [89] 48.59 58.44 31.69 41.43

Table 2. Tracking results on the validation set of MOT17 and the
train set of MOT20 [17].

4.4. Impact on tracking-by-detection

In this section, we empirically show that our proposed
method, applied to popular state-of-the-art tracking-by-
detection techniques, improves upon the MOTSynth and the
MOTChallenge benchmarks (see Tabs. 1 and 2).

On MOTSynth, we focus on three trackers (i.e.,
SORT [9], Bytetrack [88], and OC-SORT [11]) and adhere
to the following common evaluation pipeline: i) we com-
pute predicted bounding boxes through YOLOX [27]; ii) as
our approach requires an estimate of per-pedestrian camera
distances, we exploit YOLOX bounding boxes by provid-
ing them to the distance estimator DistSynth (Sec. 3.1); iii)
we finally integrate our density estimator TrackFlow into
the pipeline of each tracker, applying the normalization de-
scribed in Sec. 3.2.4 before the Hungarian algorithm.



ALP ↑ ALOE ↓
Metrics δ<1.25 ↑ RMSE ↓ @0.5m @1m @2m [0.3:0.5] [0.5:0.75] [0.75:1.]

SVR 26.7% 12.5 3.4% 6.8% 13.8% - - -
DisNet [33] 27.5% 12.1 3.8% 7.5% 14.6% - - -
Zhu et al. [91] 94.7% 2.15 34.5% 56.2% 78.5% 1.78 1.95 2.03

DistSynth 99.1% 1.91 48.0% 68.9% 86.1% 1.39 1.41 1.78

Table 3. Comparison of various distance estimators on MOTSynth [25]. Our DistSynth exhibits superior performance across all the metrics
reported. We highlight the enhancements observed in terms of ALOE, confirming an improved ability to withstand occlusions.
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Figure 2. The ALE and ALOE metrics are evaluated on MOTSynth, and our method demonstrates significant improvements. Specifically,
(a) our approach reduces ALE within the reported distance range shown in the plot, and (b) our method displays increased stability during
occlusion events, resulting in superior performance, which can be attributed to our temporal approach.

Additionally, we provide a further comparison – termed
TrackFlow GT (i.e., ground-truth) – that yields an upper
bound for our approach. In practice, as standard Track-
Flow, it relies on YOLOX detections to compute 2D dis-
placements, but, differently, it leverages ground-truth dis-
tances (made available in MOTSynth) in place of the Dist-
Synth predictions. By doing so, it is possible to assess the
potential of TrackFlow with near-perfect estimates.

We provide the results of such a comparison in Tab. 1.
Our results indicate that TrackFlow enhances the perfor-
mance of the considered trackers on all the MOTSynth
splits, i.e., easy, moderate, hard, highlighting the benefits of
our method across three levels of complexities. In particu-
lar, the improvements are of course huge when ground-truth
distances are employed; nevertheless, a consistent gain can
also be appreciated when leveraging estimated distances,
leading to an improved identity accuracy reflected by a
steady enhancement of the IDF1 metric.

As reported in Tab. 2, the evaluation on the MOT17 and
MOT20 benchmarks further shows that TrackFlow consis-
tently improves the considered trackers in even more realis-
tic scenarios (notably, SORT benefited the most from our
approach). While evaluating on the MOT20 benchmark,
we rely on the same YOLOX [27] model employed for
MOT17. This particular YOLOX model was trained on two
distinct datasets, namely CrowdHuman [72] and the initial
half of MOT17, which aligns with the training methodology

adopted in ByteTrack [88].
As mentioned before, both TrackFlow and DistSynth

have been trained solely on synthetic data without addi-
tional fine-tuning, achieving still satisfying results on real
data. Such a result opens the door to future research on how
different components, such as the distance from the camera,
can be used to advance multi-object tracking.

4.5. Distance estimation: comparison with the
State-of-the-art

To assess the merits of the proposed distance estimator,
we compare it with baselines and valid competitors from
the current literature. We report the results of such a com-
parison in Tab. 3 and refer the reader to the following para-
graphs for a comprehensive analysis.
Comparison with Support Vector Regressor (SVR) It
consists of a simple shallow baseline based on a sup-
port vector regressor, which exploits the dimensions of the
bounding boxes (i.e., height and width). Through the com-
parison with such a naive approach, we would like to em-
phasize the gap w.r.t. the bias present in the task at hand
i.e., the smaller the bounding box, the farther the pedestrian
from the camera. As expected, the SVR approach yields
low performance w.r.t. our method, due to its inability to
generalize to objects with different aspect ratios.
Comparison with DisNet DisNet [33] consists of an MLP
of 3 hidden layers, each of 100 hidden units with SeLU [43]



MOTSynth MOT17

cond. NLL↓ NLL↓ HOTA↑ IDF1↑

SORT [9] - - - 64.17 72.98

TrackFlow ✗ −1.48 −5.66 65.34 74.77

TrackFlow ✓ −1.80 −5.81 65.95 75.71

TrackFlowFT ✗ −0.10 −7.29 65.94 75.97

TrackFlowFT ✓ −0.12 −7.50 65.70 76.22

Table 4. For MOT17, ablative study W/o scenario-level condition-
ing (i.e., cond.) and W/o fine-tuning (i.e., TrackFlowFT). Per-
formance reported in terms of negative log-likelihood (NLL) and
HOTA/IDF1 for the evaluation of the resulting tracker.

activations. The network is fed with the relative width,
height, and diagonal of bounding boxes, computed w.r.t.
the image dimension; these features are then concatenated
with three corresponding reference values (set to 175 cm,
55 cm, and 30 cm). As can be seen, the improvements of
DisNet are marginal w.r.t. SVR, but its results are substan-
tially lower than those obtained by both Zhu et al. and our
approach.
Comparison with Zhu et al. The model proposed by Zhu
et al. [91] shares some similarities with our approach, as
it relies on ResNet as feature extractor and RoI pooling to
build pedestrian-level representations. However, thanks to
the additional modules our model reckons on (i.e., the tem-
poral module and the FPN branch), it is outperformed by
our approach under all the considered metrics. Our ad-
vancements concerning ALE and ALOE, compared to Zhu
et al., are illustrated in Fig. 2.

4.6. Analysis of TrackFlow

We herein question the advantages of conditioning our
density estimator on the scene under consideration. To do
so, we focus on a single tracker (i.e., SORT) and com-
pare how its tracking performance changes if the context
encoder of TrackFlow (see Sec. 3.2.3) considers only time-
dependent information about the tracks and, hence, discards
the scene-related visual information provided through clus-
ter centroids ci. From the results reported in Tab. 4 (second
and third rows) it can be observed that visual conditioning
(i.e., the row marked with ✓) favorably leads to a lower
negative log-likelihood on both the validation sets of MOT-
Synth and MOT17, as well as better HOTA and IDF1 results
on MOT17. We interpret these findings as a confirmation
of our conjectures about the advantages of designing a cost
function that is aware of the scene.

Finally, we remind that only synthetic data have been
used to train our models. However, it could be argued
whether additional fine-tuning on real-world data could

help. To shed light on this matter, we pick the best per-
forming model attained on MOTSynth and carry out a final
fine-tuning stage on the training set of MOT17, by training
for further 20 epochs with lowered learning rate. We report
the performance of the resulting model (i.e., TrackFlowFT)
W/o visual conditioning. Two major findings emerge from
an analysis of the last two rows of Tab. 4: i) as hold for
frozen models, the introduction of visual cues leads to better
results (with the only exception for the HOTA on MOT17);
ii) in general, additional training steps can profitably adapt
TrackFlow to real-world scenarios, as confirmed by both the
lower attained negative log-likelihood (equal to −7.50 after
fine-tuning, in light of the value −5.81 prior fine-tuning)
and higher tracking results.

5. Conclusion

This work presents a general approach for tracking-by-
detection algorithms, aimed to combine multi-modal costs
into a single metric. To do so, it relies on a deep genera-
tive network, trained to approximate the conditional prob-
ability distribution of inlier costs of correct associations.
We prove the effectiveness of our approach by integrating
2D displacement and pedestrians’ distances from the cam-
era, delivered by a proposed spatio-temporal distance esti-
mator, DistSynth, designed for crowded in-the-wild scenar-
ios. Remarkably, our method achieves competitive results
on MOTSynth, MOT17, and MOT20 datasets. Notably, we
show that training solely on synthetic data yields remark-
able results, indicating the importance of simulated envi-
ronments for future tracking applications, especially with
non-collectible real-world annotations as 3D cues. We be-
lieve our work will drive further advancements toward the
exploitation of 3D clues to enhance tracking approaches in
crowded scenarios.

6. Acknowledgement

The research was financially supported by the Ital-
ian Ministry for University and Research – through
the PNRR project ECOSISTER ECS 00000033 CUP
E93C22001100001 – and the European Commission under
the Next Generation EU programme PNRR - M4C2 - In-
vestimento 1.3, Partenariato Esteso PE00000013 - “FAIR
- Future Artificial Intelligence Research” - Spoke 8 “Per-
vasive AI”. Additionally, the research activities of An-
gelo Porrello have been partially supported by the Depart-
ment of Engineering “Enzo Ferrari” through the program
FAR 2023 DIP – CUP E93C23000280005. Finally, the
PhD position of Gianluca Mancusi is partly financed by
Tetra Pak Packaging Solutions S.P.A., which also greatly
supported the present research.



References
[1] Ibraheem Alhashim and Peter Wonka. High quality monoc-

ular depth estimation via transfer learning. arXiv preprint
arXiv:1812.11941, 2018. 2

[2] Favyen Bastani, Songtao He, and Samuel Madden. Self-
supervised multi-object tracking with cross-input consis-
tency. Advances in Neural Information Processing Systems,
34, 2021. 6

[3] Stefan Becker, Ronny Hug, Wolfgang Hubner, and Michael
Arens. Red: A simple but effective baseline predictor for the
trajnet benchmark. In European Conference on Computer
Vision Workshops, 2018. 5

[4] Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger
Grosse, and Jörn-Henrik Jacobsen. Understanding and mit-
igating exploding inverses in invertible neural networks.
In International Conference on Artificial Intelligence and
Statistics. PMLR, 2021. 5

[5] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pas-
cal Fua. Multiple object tracking using k-shortest paths op-
timization. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 33(9):1806–1819, 2011. 1

[6] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.
Tracking without bells and whistles. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, 2019. 2, 7

[7] Keni Bernardin and Rainer Stiefelhagen. Evaluating mul-
tiple object tracking performance: the clear mot metrics.
EURASIP Journal on Image and Video Processing, 2008:1–
10, 2008. 6

[8] Lorenzo Bertoni, Sven Kreiss, and Alexandre Alahi.
Monoloco: Monocular 3d pedestrian localization and un-
certainty estimation. In IEEE International Conference on
Computer Vision, 2019. 4, 7

[9] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and
Ben Upcroft. Simple online and realtime tracking. In IEEE
International Conference on Image Processing. IEEE, 2016.
2, 4, 7, 9

[10] Erik Bochinski, Volker Eiselein, and Thomas Sikora. High-
speed tracking-by-detection without using image informa-
tion. In 14th IEEE international conference on advanced
video and signal based surveillance (AVSS). IEEE, 2017. 1

[11] Jinkun Cao, Xinshuo Weng, Rawal Khirodkar, Jiangmiao
Pang, and Kris Kitani. Observation-centric sort: Rethink-
ing sort for robust multi-object tracking. arXiv preprint
arXiv:2203.14360, 2022. 1, 7

[12] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Proceedings of the
European Conference on Computer Vision. Springer, 2020. 2

[13] Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and
Jörn-Henrik Jacobsen. Residual flows for invertible genera-
tive modeling. Advances in Neural Information Processing
Systems, 32, 2019. 5

[14] Hsu-kuang Chiu, Antonio Prioletti, Jie Li, and Jeannette
Bohg. Probabilistic 3d multi-object tracking for autonomous
driving. arXiv preprint arXiv:2001.05673, 2020. 1

[15] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre,
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